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In this paper we discuss a simple extrapolation scheme based on the asymptotic behavior of the electronic
energies considered as functions of cutoff factor for orbital energies corresponding to virtual orbitals. The
performance of this approach is illustrated in the context of large-scale dynamic simulations for excitation
energies of the cytosine molecule in its native DNA environment. We demonstrate that the extrapolation
errors are significantly smaller than the excitation-energy fluctuations, due to the fluctuating environment.

1. Introduction

The low-scaling variants of the coupled cluster (CC) method1-5

have been a focus of quantum chemists since the inclusion of
triply or triply and quadruply connected clusters proved to
provide a chemical level of accuracy for equilibrium ground-
state properties. For obvious reasons, mainly related to relatively
low-scaling and inherent parallelism, the noniterative CC
approaches are the best candidates to be applicable in large-
scale calculations performed on massively parallel computers.
Many ground- and excited-state methods that account for the
effect of triply excited clusters such as the standard CCSD[T]6

and CCSD(T)7 approaches, the excited-state EOMCCSD(T)
corrections,8,9 the methods based on similarity transformed
Hamiltonians,10-18 and the ground- and/or excited-state renormal-
ized19-23 and locally renormalized approaches24sdespite their
N7 numerical scaling with the system sizeNshave became or
will soon become standard tools in routine highly accurateab
initio calculations. Several attempts were undertaken to alleviate
the numerical overhead of these methods. The techniques based
on Laplace or Cholesky decomposition25-28 of perturbative
denominators, methods striving at the reduction of the virtual
orbital space,29-32 or localized approaches33-38 are very efficient
in reducing the overall costs of noniterative approaches.

Some of the aforementioned methods, such as the local CC
approaches, reparametrize the genuine CC methodology and lead
to energies that become functions of additional parameters.
Similar ideas, based on the reparametrization and subsequent
extrapolation of the correlation energy, have been recently
pursued by Bytautas and Ruedenberg in the context of correla-
tion energy extrapolation by intrinsic scaling (CEEIS),39-42

which relies on the extrapolation of the correlation energy
obtained for a sequence of truncated basis sets to the complete
basis set limit. Preliminary results clearly show that the CEEIS
procedure is capable of providing results which are fairly close
to the full configuration-interaction (FCI) energies. Other
attempts to harness the various extrapolation schemes were
discussed by Ayala, Scuseria, and Savin43 in order to extrapolate
the exact MBPT2 (second order of Møller-Plesset perturbation
theory) results. A different approach, discussed by Iyengar,

Scuseria, and Savin,44 led to mathematically rigorous bounds
for extrapolated correlation energies.

Since extrapolation approaches can merge both the accuracy
of underlying methodology and relatively low computational
demands, they can be considered as fit methods for treatment
of large-size systems currently beyond the reach of standard
CC approaches, especially in excited-state calculations. Recently,
we have developed, using NWChem45 capabilities, a suite of
programs that combines classical molecular dynamics with high-
level ab initio methods for excited states.46 The main goal of
this effort was to create a framework for realistic, temperature-
dependent, excited-state calculations for biochemical systems
with an approximate description of the effects of the native
environment, including its dynamic fluctuations. Since thermal
averaging involves multiple calls to rather expensive ab initio
procedures, the low-scaling extrapolation schemes may play a
pivotal role in further advancing this area. However, this is likely
to happen only if the errors due to the extrapolation procedure
are negligible compared to standard fluctuations in the excita-
tion-energy values due to a fluctuating environment.

Usually, the size of systems of biological importance prohibits
the use of extensive basis sets that include diffuse functions or
functions of triple- or quadruple-ú quality. On the other hand,
large basis sets are required to obtain a quantitative consensus
between experimental and theoretical predictions.

The main purpose of this paper is to address, on a very basic
level, these important issues. We use a very simpleτ-parameter-
dependent cutoff scheme for the virtual orbitals with orbital
energies lying above the cutoff factor. On the basis of that, we
will derive simple heuristic formulas, subsequently used in the
extrapolation procedures, that describe an asymptotic depen-
dence ofτ-dependent energies. The performance of the asymp-
totic extrapolation scheme for completely renormalized equation-
of-motion approach with the singles, doubles, and noniterative
triples (CR-EOMCCSD(T)) method is illustrated on the excited-
state calculation of cytosine base in its native DNA environment.

2. Theory

In the combined coupled-cluster and molecular mechanics
(CC/MM) approach, the system is described by the Hamiltonian
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whereHQM is the standard many-electron Hamiltonian describ-
ing the internal energy of the quantum-mechanical (QM) region

where the indicesµ, ν, λ, andκ designate single-particle states
and the elementsfν

µ and Vλκ
µν represent one- and two-electron

integrals, respectively, whereasaλ
† (aλ) operators are the usual

creation (annihilation) operators. The interaction between the
QM region and its surroundings (MM region) is contained in
the second termHQM/MM

whereQi
m andRi

m denote charges and coordinates of the MM
region. The V({Rm},{R}) term represents the interaction
between nuclei in MM and QM regions ({R} represents
symbolically the set of nuclear coordinates in the QM region).
The third term in eq 1,HMM, describes the internal energy of
the MM region represented by an Amber-type force field.47 The
HamiltonianH̃, defined as

effectively includes, through theHQM/MM term, the interaction
of the environment with the QM region.

In our CC/MM simulations of excited states we decided to
use the EOMCC formalism as one of the most established
methodologies to calculate excited-state properties. Its basic
variant with singles and doubles (EOMCCSD) (EOMCCSD-
related methods were used in the context of advanced QM/MM
simulations described in refs 48-52) has proven to provide a
satisfactory description of vertical excitation energies for a class
of excited states dominated by single excitations with respect
to the reference function|Φ〉scustomarily chosen to be a
Hartree-Fock (HF) determinant. In the EOMCCSD approach
the wave function corresponding to theK state takes the form

whereT1 andT2 are singly and doubly excited cluster operators
andRK,i (i ) 0-2) representi-tuply excited components of the
excitation operators for a given state. For obtaining the excitation
energies, a two-step procedure is invoked. First we solve the
CCSD equations for cluster amplitudes

whereHh CCSD is the CCSD similarity transformed Hamiltonian,
Hh CCSD ) e-(T1+T2)H̃eT1+T2. Second, excited-state energies
(EK

EOMCCSD) are obtained by diagonalizing the matrix represen-
tation of theHh CCSD operator,Hh CCSD, in the space spanned by
the reference function and all singly and doubly excited
configurations

In the above equation, theRK
EOMCCSD

vector components
correspond toRK,0 and all singly and doubly excited amplitudes
defining theRK,1 andRK,2 operators, respectively. As a rule of
thumb, the EOMCCSD method works well for the singly excited

states. To cope with more complicated states that have non-
negligible doubly excited components, one should include the
effect of triply excited configurations in either an iterative or a
noniterative manner. In this paper we will use the noniterative
CR-EOMCCSD(T)δ(IA) approximation in which the due-to-
triples corrections expressed in terms of triply excited moments
are directly added to the EOMCCSD excitation energies,22

ωK
EOMCCSD:

where the tensorZK,ijk
abc is defined as

with R̃K,3 representing an approximation of the exact, triply
excited RK,3 operator, where the amplitudes,R̃K,abc

ijk , are set
equal toMK,abc

ijk /(ωK
EOMCCSD + εi + εj + εk - εa - εb - εc) (ε’s

correspond to the HF orbital energies), andMK,abc
ijk represent the

three-body moments of the EOMCCSD equations. Even for
single-point calculations the CCSD/EOMCCSD and CR-EOM-
CCSD(T) approaches are characterized by quite large compu-
tational demands ofno

2nu
4 and no

3nu
4, respectively, whereno

(nu) designates the number of correlated occupied (unoccupied)
orbitals. For QM/MM simulations this situation is even worse,
due to the need for multiple calls of expensive QM-related
procedures. To reduce this prohibitively large numerical cost,
in the last few decades we have witnessed an enormous effort
striving at reducing the scaling of the approximate CC/MBPT/
EOMCC/CI approaches in order to make them applicable in
situations characterized by considerable system size or large
dimension of the basis set. Also, in all approaches that attempt
to achieve the infinite basis set limit, the correlation energies
(as well as the underlying Hartree-Fock) were parametrized
with respect to the quality of the basis set.53-57 In this paper
we want to discuss a simple extrapolation model for calculating
excitation energies, which is parametrized with respect to a
cutoff factor for orbital energies. We will show that the errors
of the extrapolation model developed here are an order of
magnitude smaller than the excitation energy discrepancies
characteristic for a typical QM/MM simulation. Therefore, in
the context of high-level QM/MM calculations these simplified
schemes may assume more practical dimension by making, at
least at an approximate level, the use of more extensive basis
sets in realistic simulations feasible.

Let us assume that we decided to use in the calculations of
energies corresponding to a given basis set only a limited subset
of all virtual orbitals with corresponding orbital energies less
than a given thresholdτ. The set of these virtual orbitals along
with all correlated occupied orbitals will be denoted asΩτ while
all remaining virtual orbitals form the setΩh τ, so we have

where the setΩ is composed of all correlated orbitals. In the
next step we will try to relate the results of a given correlated
method that uses only orbitals from theΩτ set with the results
of the same method which employs the full set of orbitals,Ω,
for sufficiently large values ofτ parameter. This analysis can

ωK
CR-EOMCCSD(T)

) ωK
EOMCCSD+ δK(IA) (8)

δK(IA) ) ∑
i<j<k;a<b<c

ZK,ijk
abc MK,abc

ijk /DK (9)

ZK,ijk
abc ) 〈Φ|[RK,0(T1T2 +1

6
T1

3) + RK,1(T2 +1
2
T1

2) +

RK,2T1 + R̃K,3]†|Φijk
abc〉 (10)

Ω ) Ωτ + Ωh τ (11)

HQM ) EQM
(0) + ∑

µ,ν

fν
µaν

†aµ +
1

4
∑

µ,ν,λ,κ

Vλκ
µνaλ

†aκ
†aνaµ (2)

HQM/MM ) ∑
i,µ,ν〈µ| Qi

m

|Ri
m - r ||ν〉aµ

†aν + V({Rm},{R}) (3)

H̃ ) HQM + HQM/MM (4)

|ΨK〉 ) (RK,0 + RK,1 + RK,2)e
T1+T2|Φ〉 (5)

〈Φi1...in

a1...an|Hh CCSD|Φ〉 ) 0 (i ) 1, 2) (6)

Hh CCSDRK
EOMCCSD) EK

EOMCCSDRK
EOMCCSD (7)
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be conveniently carried out using standard perturbative reason-
ing. Without loss of generality, let us focus our attention on
any truncated configuration interaction method that uses a
subspace spanned by up ton-tuply excited configurations with
respect to a given Hartree-Fock determinant. This space can
be defined by the projection operatorP. The orbital set
decomposition (11) naturally entails related decomposition of
the P space:

wherePτ represents the subspace ofP space which contains
the Slater determinants constructed from the orbitals defining
the Ωτ set. Its orthogonal complement in theP space will be
referred to as theQτ space. To relate the low-lying energies
EK,τ and corresponding states|ΦK,τ〉 (K ) 0, 1, 2, ...,M, M ,
Nτ, Nτ ) dim Pτ) obtained by diagonalizing the matrix
representation of the Hamiltonian operator in the spacePτ, Hτ
) PτHPτ, with the target eigenvaluesEK and eigenvectors|ΨK〉
(K ) 0, 1, 2, ...,M) of the PHP operator, let us consider the
perturbed problem

whereτ-dependentH0,τ andVτ operators are defined as

In the above equations theF operator represents the Fock
operator. The solutions of eq 13 forλ ) 0 correspond to
eigenvalues of theHτ operator, i.e.,EK,τ(0) ) EK,τ and|ΨK,τ(0)〉
) |ΦK,τ〉 (K ) 0-2, ...,M), while for λ ) 1 we obtainEK,τ(1)
) EK and|ΨK,τ(1)〉 ) |ΨK〉 (K ) 0, 1, 2, ...,M). Once the values
of cutoff factor τ are chosen to be sufficiently large, we can
expect that each|ΦK,τ〉 constitutes a very good approximation
for the target state|ΨK〉 and, therefore, theVτ operator for these
states can be considered as a small perturbation. In such a
situation it is justified to expect that the second-order corrections,
EK,τ

(2) , to EK,τ recoverEK almost entirely: i.e.

Using the standard MBPT methodology and assuming inter-
mediate normalization with respect to a given reference|ΦK,τ〉
one can show thatEK,τ

(2) takes the form

where

where the index∆ is used to label the configurations from the
Qτ space andE∆,τ ) 〈Φ∆,τ| F|Φ∆,τ〉. Again, onceτ is sufficiently
large allE∆,τ - EK,τ values are simply on the order ofτ. If so,
in this asymptotic limit, theEK energies can be expressed as

whereAK,τ ) -〈ΦK,τ|VτQτVτ|ΦK,τ〉. The addition of the higher
order corrections toEK,τ energies results in a more detailed
description of the asymptotic behavior

Since all basis sets used in calculations are of finite dimension,
we should formally require that

whereεU is the orbital energy of the highest unoccupied orbital.
These constraints simply reflect the fact that all one-particle
basis sets used in calculations are of finite dimension. In terms
of excitation energies, which are the focus of our interest, these
formulas translate to

whereRK,τ ) AK,τ - A0,τ, âK,τ ) BK,τ - B0,τ, γK,τ ) CK,τ - C0,τ,
etc. Our attention will be on the simplest case when only the
first two terms on the right-hand side of eq 22 are taken into
account, i.e.

This formula can be used in defining a simple extrapolation
scheme. Let us assume that we performed a number of
calculations{ωK,τi

}i)1
m corresponding to increasing values of

the τ parameter, i.e.,τi > τj for i > j. For sufficiently large
values ofτ parameters, which ensure fast convergence of the
MBPT expansion, (13), one can expect functions of the type

where components of the vectorx ) {x1, x2, ..., xn} are the
parameters whose values are variationally optimized to provide
the best fit to the set of{ωK,τi

}i)1
m values. We will assume that

for the optimumx vector we have

Obviously, we do not know the functional dependence of the
Γ(τ,x) function but it is justified to ponder theΓ(τ,x) function
also as a decreasing function of theτ parameter. The most
apparent choice ofΓ(τ,x) can be defined as∑i)1

p xi+1/τi, which
leads to the class off functions

In the next section we will employ thefp functions forp )
1-3. We believe that the results derived for the truncated CI
method are also valid for other parametrizations of the wave
function. In fact, using the second quantized formalism, similar
results can be derived for the CC and EOMCC methodology.
We will apply the results of this section to the CR-EOMCCSD-
(T) vertical excitation energies corresponding to different values
of τ parameters.

On the basis of the decomposition of the second quantized
form of the Hamiltonian, cluster operatorT, and excitation
operatorR

EK = EK,τ +
AK,τ

τ
+

BK,τ

τ2
+

CK,τ

τ3
+ ... (20)

AK,τ ) BK,τ ) CK,τ ) ... ) 0 ∀τgεU
(21)

EK - E0 ) ωK ) ωK,τ +
RK,τ

τ
+

âK,τ

τ2
+

γK,τ

τ3
+ ... (22)

ωK = ωK,τ +
RK,τ

τ
(23)

f(τ,x) ) x1 +
Γ(τ,x)

τ
(24)

ωj K ) f (εU,x) = ωK (25)

fp(τ,x) ) x1 + ∑
i)1

p xi+1

τi+1
(26)

X ) Xτ + Xhτ (X ) H̃, T, R) (27)

P ) Pτ + Qτ (12)

(H0,τ + λVτ)|ΨK,τ(λ)〉 ) EK,τ(λ)|ΨK,τ(λ)〉 (13)

H0,τ ) PτHPτ + QτFQτ (14)

Vτ ) QτHPτ + PτHQτ + Qτ(H - F)Qτ (15)

EK = EK,τ
(2) + EK,τ (16)

EK,τ
(2) ) 〈ΦK,τ| VτRK,τ

(0)Vτ|ΦK,τ〉 (17)

RK,τ ) ∑
∆

|Φ∆,τ〉〈Φ∆,τ|
EK,τ - E∆,τ

(18)

EK = EK,τ +
AK,τ

τ
(19)
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whereXτ represents part of theX operator expressed in terms
of spin-orbital indices from the setΩτ while each term inXhτ
contain at least one index fromΩh τ, we can easily derive similar
results for CC-based approaches not only for excitation energies
but also for properties. Using this decomposition for theT and
H̃ operators, the corresponding CC equations can be written in
the form

wherePτ andQτ are projection operators (defined in the same
way as the operators in eq 12) on the manifold of excited
configurations used to define the cluster operatorT ) Tτ + Thτ.
Simple analysis shows that theThτ operator should reveal 1/τ
bahavior for sufficiently large values ofτ (for details see ref
58). Similar conclusions can be inferred from the analysis of
equations forΛ operator used in the context of gradient and
property calculations. Using the bivariational expression for CC
expectation value for operatorF

we arrive at the formula

whereνjτ decays at least as 1/τ in the asymptotic limit. Obviously
the minimum value of theτ parameter that guarantees the 1/τ
bahavior can be contingent upon the system and basis set
employed.

3. Results and Discussion

As a representative application to test our extrapolation
models, we have focused on the calculation of the lowestππ*
excited state of cytosine base in the DNA environment. The
main motivation behind this choice of system is the experi-
mentally observed efficient excited-state deactivation mechanism
that protects DNA bases against photochemical damage. To
understand the mechanism of radiationless internal conversion,
several excited-state models have been intensively studied in
the past decade (see refs 59-66 and references therein). All of
these calculations were performed either for cytosine or the
cytosine-guanine pair in the gas phase or for the hydrated form
of the cytosine. Since for the DNA bases the effect of fluctuating
environment can be quite sizable, we have recently addressed
this problem in our hybrid CC/MM approach, which allows for
sampling the excitation energies in the course of molecular

dynamics (MD) simulation. To calculate the excitation energies
of the quantum region, we chose to use the variant of the CR-
EOMCCSD(T) method defined by eqs 8 and 9. In all calcula-
tions the core orbitals were kept frozen.

Let us briefly describe only the basic tenets of this calculation
(for details see ref 46). The system considered in this work
consisted of the 12-mer fragment of B-DNA (3′-TCGCGT-
TGCGCT-5′) solvated in a rectangular box (51× 51 × 69 Å)
of SPC/E67 water. To neutralize the charge, 22 sodium ions were
also added to the system, resulting in a total of 18 060 atoms.
After initial optimization the system was brought to equilibrium
by warming in stages (50 K increments) over the course of 60
ps of classical molecular dynamics simulation. Dynamic tra-
jectories were generated with constant temperature and pressure
(298.15 K, 1.025× 105 Pa) molecular dynamics simulations
using a 15 Å cutoff. The excited-state calculations were based
on a quantum representation of cytosine base capped with a
hydrogen link atom in the field of the entire DNA-water
complex (18 048 point charges).

The first test consisted of excited-state calculations on a single
reference snapshot taken from the classical MD trajectory. The
snapshot was chosen to provide the smallest discrepancy
between resulting vertical excitation energy for theππ* state
and its time-averaged value within full cc-pVDZ calculations.
All snapshot calculations were performed in the field of
surrounding environment. We used four basis sets, cc-pVDZ,
aug-cc-pVDZ, cc-pVTZ, and cc-pVQZ,68,69in order to illustrate
the performance and dependence of our extrapolation models
on the dimension of basis set employed.

Table 1 collects the CR-EOMCCSD(T) results obtained using
various extrapolation schemes, which employf1(τ,x), f2(τ,x), and
f3(τ,x) trial functions described in the previous section. The
components ofx vectors are subject to variational optimization
in order to provide the best fit to the calculated points. Two
schemes have been studied: the first one uses five points
corresponding toτ1 ) 1.0,τ2 ) 1.2,τ3 ) 1.4,τ4 ) 1.6, andτ4

) 1.8 to extrapolate the results forεU, while the other is based
on the three-point extrapolation forτ1 ) 1.0, τ2 ) 1.2, andτ3

) 1.4. For each value of theτ parameter used in CR-
EOMCCSD(T) calculations, a significant number of virtual
orbitals were excluded from the calculations. For example, for
the cc-pVQZ basis the total number of molecular orbitals
amounts to 590. Of those, forτ ) 1.4, 476 virtual orbitals are
not correlated in the CC/EOMCC calculations. The values of
the highest orbital energyεU for cc-pVDZ, aug-cc-pVDZ, cc-
pVTZ, and cc-pVQZ basis sets are equal to 3.84632, 4.10223,
15.90914, and 43.06471 hartree, respectively. Let us start our
analysis from Table 1 with the results for the five-point
extrapolation. For two basis sets, cc-pVDZ and aug-cc-pVDZ,

TABLE 1: Results of Several Asymptotic Extrapolation Models for the ππ* Excitation Energy of the Cytosine Molecule in the
cc-pVDZ, aug-cc-PVDZ, cc-pVTZ, and cc-pVQZ68,69 Basis Setsa

basis ωτ)1.0
CR(T) ωτ)1.2

CR(T) ωτ)1.4
CR(T) ωτ)1.6

CR(T) ωτ)1.8
CR(T) ωCR(T) f1(εU,x) f2(εU,x) f3(εU,x) F

Five-Point Extrapolation
cc-pVDZ 5.22 5.15 5.13 5.13 5.10 5.02 5.06 5.11 4.92 0.18
aug-cc-pVDZ 5.00 4.98 4.96 4.93 4.91 4.85 4.90 4.83 4.77 0.13
cc-pVTZ 5.13 5.08 5.06 5.03 5.02 4.98 4.97 4.92 0.06
cc-pVQZ 5.08 5.04 5.01 4.99 4.98 4.94 4.93 4.90 0.04

Three-Point Extrapolation
cc-pVDZ 5.22 5.15 5.13 5.02 5.04 5.17 5.13 0.13
aug-cc-pVDZ 5.00 4.98 4.96 4.85 4.93 4.88 4.87 0.06
cc-pVTZ 5.13 5.08 5.06 4.98 5.01 4.98 0.03
cc-pVQZ 5.08 5.04 5.01 4.94 4.94 4.91 0.03

a Five and three excitation energies corresponding to listed values ofτ parameters were used in the extrapolation. The exact CR-EOMCCSD(T)
excitation energy is denoted asωCR(T). The values ofεU are discussed in the text. TheF quantities are defined as maxi,j|fi - fj|.

Pτ[(H̃τe
Tτ)C + (Hh̃ τe

Tτ+Thτ)C]|Φ ) 0 (28)

Qτ[(H̃τe
Thτ)C + (H̃h τe

Tτ+Thτ)C]|Φ〉 ) 0 (29)

〈F〉 ) 〈Φ|(1 + Λτ + Λh τ)(e
-(Tτ+Thτ)(Fτ + Fjτ)e

Tτ+Thτ)|Φ〉 (30)

〈F〉 ) 〈Fτ〉 + νjτ (31)
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we were able to perform full CR-EOMCCSD(T) calculations
for the ππ* state of cytosine. For the aug-cc-pVDZ basis set,
extrapolation results, except for thef3 model, nicely compare
with full CR-EOMCCSD(T) excitation energies (ωCR(T)), with
errors within 0.05 eV. This picture is also valid for the smaller
cc-pVDZ basis set, where, except for thef3 scheme, the errors
with respect to the exact values of excitation energies are less
than 0.1 eV. In both cases the extrapolation based on the
simplestf1 function seems to provide the most reliable results.
To better characterize the discrepancies between results obtained
with f1, f2, and f3 trial functions, we define theF parameter,
which is defined as the largest difference between any two of
these extrapolation approaches, i.e.,F ) maxij|fi - fj|. Notably,
the values ofF are monotonically decreasing with the basis set
size. Indeed, the value ofF varies from 0.13 eV for cc-pVDZ
to the small value of 0.03 eV for the cc-pVQZ basis set. This
observation means that the specific choice of the trial function
is not so important. The observed largeF discrepancies
characteristic for smaller cc-pVDZ and aug-cc-pVDZ basis sets
can be attributed to the relatively small size of basis set and
lack of homogeneous distribution of the orbital energies.
Consequently, the use of more extensive basis sets leads to a
more stable behavior of our extrapolation models.

These general observations are supported by the cheaper
extrapolation model based only on three calculated points (see
Table 1). For the cc-pVDZ and aug-cc-pVDZ basis set we
observe thatf1-based extrapolation gives reasonable results,
within 0.08 eV of ωCR(T). Also, the discrepancies between
different extrapolation schemes gradually vanish (see theF
parameter values) and become as small as 0.03 eV for cc-pVQZ.
At this point, a word about the numerical savings is in order. If
nu and nu(τ) designate the number of virtual orbitals in full
calculations and in truncated calculations defined by theτ
coefficient, then, per a single point CR-EOMCCSD(T) due to
triples correction calculation that scales such asno

3nu
4 (no is

the number of occupied correlated orbitals), the speed-up factor
η should be given by the formula

For example, for the cc-pVQZ basis set withnu ) 561 andnu(τ
) 1.4) ) 126, the speedup is as large as 393. Assuming that
for the large basis sets the extrapolated energies lead to errors
not exceeding 0.1 eV, the extrapolation model may be consid-
ered as a viable alternative to other low-scaling approaches.

In the second test we have calculated the dynamic average
of the energy of the first excited state (ππ*) by resampling 20
ps classical MD trajectory at a rate of 0.5 ps. The dynamic
calculations were based on the triply threaded extrapolation
model that consisted of three independent CR-EOMCCSD(T)
calculations defined by three different values of cutoff factor
τ1, τ2, and τ3 (τ1 < τ2 < τ3) for each sampling event.
Subsequently, the extrapolated value ofω̃K

CR-EOMCCSD(T) (in all
casesx1 + x2/τ2 was used to find the best fit) has been used in
thermal averaging of the vertical excitation energy. The results
of our studies performed with the cc-pVDZ and cc-pVTZ basis
sets are collected in Table 2. For comparison, the gas-phase
CR-EOMCCSD(T)/cc-pVDZ calculations for the isolated cy-
tosine fragment using B3LYP optimized ground-state geometry
yield vertical excitation energy forππ* equal 4.76 eV.46 As in
the snapshot calculations, we found that thef1(τ,x) scheme
provides us with the most reliable results. It is remarkable to
notice that for the cc-pVDZ basis set this simple extrapolation

scheme brings us as close as 0.02 eV to the thermally averaged
results obtained with a nontruncated set of virtual orbitals. This
fact clearly shows that the errors made in the asymptotic
extrapolation approach are negligible compared to typical
fluctuation due to environment, which for CR-EOMCCSD(T)
excitation energies translates into several tenths of an electron-
volt.

In conclusion, we hope that our asymptotic extrapolation
scheme will help to reduce effectively a very large numerical
overhead associated with the use of the high-level CC/EOMCC
ab initio methods that account for the effect of triply excited
configurations in the context of large-scale QM/MM simulations.
Our results also indicate that the approximate QM/MM calcula-
tions exploiting more extensive basis sets of cc-pVXZ or aug-
cc-PVXZ (X ) D, T, Q) quality are feasible. In the snapshot
calculations we have also demonstrated that for the larger basis
sets the asymptotic extrapolation approach reveals much more
stable behavior compared to analogous calculations exploiting
smaller basis sets. The development of more efficient extrapola-
tion methods will be the focus of our future studies.
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